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The behavior of small perturbations is investigated in the region bounded by 
plane discontinuity surfaces propagating in a medium at constant velocities in 

opposite directions. A surface of contact discontinuity is present in the general 

case between the two discontinuity surfaces. Characteristics of the unperturbed 
motion between discontinuity surfaces are assumed constant and the perturbed 

flow is assumed one-dimensional. The investigation of stability of flows which 
occur at the disintegration of the initial discontinuity in a two-parameter medi- 
um with arbitrary equations of state reduce in many instances to such problem. 
The derived results are independent of the specific nature of the discontinuity 
surfaces (which, for example, may be detonation waves). The proposed investi- 
gation method can be applied also to cases in which more than one surface re- 
flecting perturbations are formed on one or both sides of the initial discontinuity 

plane. 
The problem of disintegration of an arbitrary discontinuity in a perfect gas 

was first solved by Kochin [ 11. Let E be the Lagrangian coordinate of particles 

lying in a single plane parallel to the initial discontinuity plane. and let the plane 

E = 0 coincide at an instant t = 0 with the initial discontinuity plane. The dis- 
integration of an arbitrary discontinuity in a perfect gas and, generally, in any 
medium for which the derivative (8’~ / dv2), , where P is the pressure, V the 

specific volume, and s the entropy, is positive and the derivative (ap / aP), is 
continuous on each side of the plane E = 0, results in the propagation of single 
shock or centered rarefaction waves from each side of plane E = 0 . The pro- 
pagation velocity of the shock wave over particles ahead of the front is higher 
and behind it lower than the related speed of sound. The forward and rear bound- 
aries of the centered wave, which are weak discontinuities, propagate over par- 
ticles at sonic velocity [ 1, 21. 

In media, for which the derivative (@P / i?V2), is of a different sign in differ- 

ent regions of the lip-plane. rarefaction shocks and centered compression waves, 
as well as combined centered compression or rarefaction waves may be genera- 
ted besides shock waves (compression shocks) and centered rarefaction waves 

[3]. When the derivative (+ / tiP), is continuous, only one wave of the above 
kind propagates from each side of the plane r; = o . As in the case of (a2p / 

aV2), > 0 , expanding regions 0 < 5 < El (t) and 6 (t) f 5 q CJ, where the flow 
parameters are constant, adjoin the surface E = 0 . The boundaries E = E1 (t) 
and E = Ez (t) of these regions are either strong or weak discontinuities, and sur- 
face E = 0 can be a contact discontinuity. 

Qualitatively the pattern of motion which takes place at the disintegration of 
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an arbitrary discontinuity may increase in complexity, if the motion is accom- 
panied by chemical reactions [4] or phase ~ansformations, or when the medium 
interacts with an electromagnetic field [S]. For example, in some cases two dis- 
continuities which reflect perturbations and propagate in the same direction may 

be formed on one or two sides of the surface E = o . However in a number of 

cases the investigation of flow stability reduces to the problem considered below. 

1. We assume that the equations of state for the medium conform to known con- 
straints of thermodynamic character and consider only cases, when either a single com- 

pression or rarefaction shock, or a single conventional or combined rarefaction or com- 
pression waves propagate from both sides of the plane 5 = 0 , without imposing on the 
medium properties (in particular on derivatives (d2p / BV?), and (8~ / c~V),) any fur- 
ther limitations. 

According to [3] the stability is defined in such cases by the behavior of ~rt~bations 

in the region E2(t) < E < j&(t). Perturbations outside that region can be assumed to 

be zero. 
The equations of state of certain media admit transformations for which the laws of 

conservation and the requirement for nondecreasing entropy are satisfied, and which are, 
nevertheless, considered unattainable. In particular, nonevolut~ona~ shocks and shocks 

for which the stability conditions for an isolated shock wave are not satisfied, belong to 

such shocks f6]. For shocks not excluded by these constraints, the following inequalities 

must be satisfied: 
0 < p < 3. (1 -i_ M), M < 1, M” > 1 (1.1) 

where (av / dp)~ is a derivative along the shock adiabate, a is the speed of sound, 
and the subscript zero denotes parameters ahead of the shock front. 

2. Let the parameters related to the disintegration of the flow discontinuity be sub- 
jected at the instant to in the region &(-fJ < g < &(t,J to small perturbations,while 

outside that region initial perturbations are absent. The last assumption is not a basic 
limitation and, as shown in [3], is acceptable in cases in whfch surface E -2 I&(t) is the 

rear boundary of a conventional or centered combination wave. 

We assume that the perturbed flow is adiabatic and restrict our investigation to the 
behavior of perturbations of velocity u’ and pressure p’. As a function of 5. the entropy 

perturbations in region &,(t,J < 5 1 < kl(t,,), t > to are determined by the input data, 

while in regions E%(t) < 5 < & (t,) and &(t”) -< E *< g,(f) they are determined 
by the perturbed entropy for 5 ..= &(t) I- 0 and g --= &(f) - 0. The latter, as well 
as perturbations &’ and j: are determined by the linearized conditions at a normal 

shock for known u’ and p’. 
We seek velocity and pressure perturbations in the form U’ -= V (If- I-) / 2a and 

pf I= (I+ -+ I-) / 2; here and sub~quently V and n denote, respectively, the specific 

volume and the speed of sound in the unperturbed flow. The unperturbed flow parameters 
and the quantities I* are denoted in region 0 < E ,< El(t) by subscript 1 and in re- 
gion &(Q < E < 0 by subscript 2. In a linearized formulation we obtain for 1’ and 

I- the following system of equations and initial and boundary conditions: 
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(2.1) 

where Y$ is a Lagrangian coordinate related to the Euler coordinate 5 by formula (8~ 1 
aE) == V, A and K, are the coefficients of perturbation reflection from the contact 

d~~ntin~~ and from surface E = g,(l), respectively, along which the boundary con- 

ditions are obtained by linearizing ~lationshi~ at the normal shock. In the case of a 

shock wave for -4 in (2.1) and for K,. we have 

A = (a/V)2-(~/V)1 2 0 - Mr) - i-1, 

(a./ v), + (U/VI ’ 
K,L= _ 

2 (1 f Mr) - P”, 
(2.2) 

it follows from (2.2) that 0 \< 1 A I< 1, if a, # 0 and are bounded. For A = 0 
the surface E = 6 does not reflect perturbations and the amplitude of transmitted waves 
remains unaltered. In considering the stability criterion for A = .& 1, we shall bear in 

mind that the question is about the motion stability of a medium which occupies the 

half-space E > 0 (or E < 0) when the boundary condition at surface E = 0 is ofthe 
form 1 + == I- (A -= 1) or I+ = ---I- (A -y -1). The first of these corresponds 

to the disinte~ation of the initial dis~nt~~~ at the rigid wall biding the medium, 

and the second to disintegration at the free boundary. It should also be noted that, when 

surface g = t,(t) is either a weak dicontinuity or shock at which mr = 1, then pL, = 0 

and K, = 0. 
Since the system of equations for perturbations contains invariants, hence a variation 

of perturbation amplitude can only take place at interaction with discontinuity surfaces. 

The conditions of flow stability are readily established in particular cases in which 
amplitude variation occurs only at interaction with two surfaces. To do so it is sufficient 
to observe the variation of perturbation amplitude for a single successive reflection from 
these surfaces. In such particular cases the criteria of asymptotic and indifferent stabili- 

ties, and of instability of the flow are, respectively, of the form 

A = 0:. 1 R,K, / < 1, 1 K,K, i = 1, f KllilZ I> 1 (2.3) 
K, == 0: f AK, I< 1, 1 AR, 1 = 1, j AK, ! > 1, q f: r 

~=tl:!K,/<h/K,~=1, If&/>1 

In the last case r = 1 (r = 2) when the medium occupies the half-space z > 0 
(half-space g < 0). 

In the general case, when the reflection coefficients k’, and Kg are nonzero and (I < 

IAl X C’ ‘I. the behavior of perturbations is more complex, and to formulate conditions 
of flow stability a more detailed analysis based on an analytic presentation of solution 
is necessary. 

3. The analytic representation of solution of problem (2.1) can be obtained by me- 
thods of operational calculus, using new independent variables z = In (t / t,,) and q = 
5 i j,L Another method is also possible, if one takes into account that owing to the pro- 
perties of invariants I,+ and I,- it is sufficient in investigations of the considered flow 



88 G.Ia.Galin and A.G.Kulikovskii 

stability to analyze their asymptotica at the contact discontinuity, 
Note that acoustic waves which leave the contact discontinuity at one and the 

same time, return, after a single reflection from both shocks, to the contact discontinuity 
at the same instant of time (Fig. 1). The instants of time shown in Fig. 1 are defined 

Fig. 1 

1 

by the relationships 

t,=,tlB1, t,=t/B,, t,-tIB,B, 
(B, = (1 - M,.)/(l -t Mr), r = 1, 2) 

Using the above property together with boundary conditions 
(2.1) it is possible to show that ea.ch of the invariants I,* must 
satisfy for 5 = U and t > to one and the same functional 
equation 

(3.1) 

AK,l(T -i_ a) - K,K, I(T) =o 
T -< In (t / t,), a == --In B,, f3 = -1n Bs 

Invariant I (‘6) may be considered to be a known function of ini - 
tial data in the interval 0 < ‘t < a + p . It is possible to 
show by methods of operational calculus that the solution of Eq. 
(3.1) is of the form 

(t)=Y(Z)~(O)+S~~(t-..t)Y(l)dt 
0 

where (z, (T) is a periodic function whose fundamental period is equal cx. $- j$. In the 

interval 0 < z < a -t p function @ (r) is expressed ln terms of initial data ; func- 
tion 0 (7) can he made differentiable by suitably ordering these data. Function Y (T) 
is represented in the form of the complex integral 

Y(z) = & 
Qtim p+pp __ * 

a “‘p (2) 
P’dz 

0,--i Jo 

(3.2) 

whose integration is carried out in the plane of the complex variable z along the straight 
line Re z =; 60 which lies to the right of all zeros of faction tp (2). 

In the special cases in which cx and 6 are commensurable the integral (3.2) is corn - 

puted with the use of Laplace transformation tables (see e. g. , f7]), and for functions 

Y (z) and 1 (‘t) simple formulas are obtained. Let m.a = Zp, where m and I are re- 
latively prime integers, and let function 9 =G g (t) be the solution of the ordinary dif- 

ferential equation 
L/m+“1 (t) _:- AK1y(m) (t) - A KCJ y(f) (t) - IL-,& y (t) = 0 (3.3) 

and satisfy the initial condition 

y (0) = y’(0) = * . . . p+w (0) --- 0, yw-qq = 1 (3.4) 

Then functions U, (r) and f (r) are expressed in terms of the following derivatives of 
function g (t) computed for t = 0 : 
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m+1-1 W++-1 

Y((z)= 2 g(n+r)(O), I(+== x a+- n+;+i ~)g(~+r)(o)(n~~+z) 
r=o r=o 

where n = n (z) is an integer which satisfies the inequality 

12 (r) < z 1 / a < )2 (r) + 1 

The asymptotic behavior of function 1 (zj depends on the dis~ibutiou in the complex 

plane w = eaz!l of roots h, of the polynomial 

1L’ (w) = w*+L + A Klw”’ - AK,w” - K,K2 

If all A, are different, 

and, when ! A9 1 < 1 , the flow is stable. 

Note that for KxK, f 0 the ~lynomial N (w) cannot have roots whose rn~tip~ci~ 

exceeds 2 and double complex roots whose absolute values are unity. The polynomial 
N (w) can have the double root W = 1 and w = --1. In these cases the flow is un- 

stable. Obviously the values of d, Ki and Ks which in the space (A, K,, K,) cor- 
respond to multiple roots w = & ‘l lie either at the boundary of stability region or 
in the region of ~stabili~ (in the examples given in Fig, 4 these are indicated by small 
circles). 

Thus for commensurable a and p the flow is asymptotically stable, if all roots of 

rv (w) lie inside the unit circle 1 w 1 < 1. As an example we adduce the asymptotic 
stability criterion for certain values of IIL and c 

1 + A (K, - K,) - K,Kz ,> 0 (3.9 

1 - A (K, - K,) - K,K2 > 0 (m-_ z.r;l) 

1 + KIK, > 0 

1 -I- A (K, - K,) - KIK, > 0 
1 -A (K, - KJ i- KxK, > 0 (m=‘2, Z.-l) 

1 + A K&l - K12) - K12Kz2 > 0 

1 -t A (KI - K,) - K,K, > 0 
(1 + K,K,)2~1 - K,K,) - A”K,fK, + K,) (1 - K;‘) > 0 
1 - A (K, - KJ - K,K, > 0 (mz3, I: 2) 

4, Cases in which cy; and $ are incommensurable is evidently of great interest. In 
such cases the asymptotic behavior of function f frf depends also on the dis~lbution of 
zeros of the quasi-polynomial cp (z), 

When a / /3 is irrational the quasi-polynomial ‘p (z) is an analytic almost periodic 
function in the band - 00 < Re z < ~3. For fixed A, KI and K, there exist con- 
stants d1 and ds such that all zeros of the quasi-polynomial cp (z) lie within the band 

d, < Re z < 4. For Re z > d, function 1 I rp (z) is almost periodic and bounded 

PI * 
If d, < 0, the considered flow is asymptotically stable. It can be shown that for d,<t~ 
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d~<a,<O, L= max _-!-- 
I I Rez=a, q(') 

max ( l’ (7) 1 
cg,cr,ia+p 

let b* be the exact upper boundary of the real parts of the quasi-polynomial o, (z) 
zeros when at / g is irrational. Let us establish the criterion of the flow asymptotic sta- 
bility, i.e. the relations between parameters A, iKt and K, for which G* < 0 , and 
consider the equation 

e-fa+P)z fp, (2) z 1 + A f&e-az - AK2e”Pz - KlK2e-(a+fi)Z = 0 (4.1) 

According to Kronecker’s theorem (see, e. g. , [8]) it is possible for an irrationaI a / p 

to assign with any degree of accuracy to the arguments of the second and third terms of 

(4.2) any a priory specified set of values by a suitable choice of Im z . The clos- 
ing of the set of real parts of roots of Eq. (4,X) coincides, consequently, with the set of 

values of Q, which satisfy the equation 

where 8, (r = 1, 2) are arbitrary real numbers. Let us write Eq, (4.2) in the form 

51 = ~~~~~~~~~~ (4*3) 

Since 61 and &, can assume any arbitrary independent values along the unit circle, the 
set of all o and v (v = cos @2), for which the modulus (R) of the right-hand part of 
(4.3) is equal unity, represents the solution of Eq, (4.3). It follows from (4.3) that 

R:-&-[ 
1 + (M+ -- :! /l?bv 

1 -/- b2 - Zbv I 

“2 

Let us point out some of the properties of function R (6, Y) required in the subsequent 

analysis. We denote by 0, (r =- 1, 2, 3) the values of 0 for which b (a,) = 1 A lrm8. 
Having computed the derivatives of function N (3, Y) , we readily find that (i3R i 
&r)> 0 when Y = -1 and for v = 1 and o1 < 0 < cr,, while 

We point out that R (oi, 1) = 0. The described properties of function R (6, Y) are 

sufficient for deriving the required statements (curves of functions R (0, 1) and R (6, 
--I) are shown in Fig. 2 for illustration). 

It is obvious that, when or > 0 , the roots of Eq, (4.3) always lie in right-hand half- 

plane. let o, < 0 and o2 > 0. In that case minGa R (cr, Y) = R (0,1). If a&O, 
then rnirl,>,sR (0, Y) = R (0, -4). Hence o* ( 0 when the following conditions 

are satisfied: R (0, 1) > 1 for 1< I Ks/ < 1 I IA I, while for I lilt I G 1 we have 
R (0, --1) > 1. 

This implies that for irrational a / j3 the flow is a~m~oti~lly stable, if the coeffi- 
cients A, x1 and R,. belong to the region defined by the inequalities 
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1 -I- lff l(lK, I--- I K,I) - I K,Kz I > 0 (4.4) 

1 - IA IWG I- t K,I) - I K&2 I > 0 

The set of points P (A, K1, K,) which satisfy the conditions of asymptotic stability 

(4,4), and in particular cases those defined by (2,3), constitutes region Q in the space 

of parameters A, K1 and K2. A general form of that region is shown in Fig. 3, and 

Fig. 2 

Fig. 4 

Fig. 3 

its bo~daries in the plane ‘4 = A, (U < -4, < 4) appear in Fig, 4. The solid line 

corresponds to irrational cx f 0 . For comparison the boundaries of region t) for a = p 
and 2a -‘= p are also shown in Fig. 4 (a) and (b). respectively. The conditions of asymp- 
totic stability are defined by (3.5). For rational a / p the boundaries of those parts of 

region Q , where they diverge from the boundaries of region Q in the case of irrational 
a / fl, are shown by dash lines. 

It is necessary to stress that conditions (2.3), (3.5) and (4.4) were obtained on the as- 
sumption that the shocks present in the stream are evolutional ( pr =$= 2 (1 + M,), 

&I r G< 1, MO, > I), and that the first of the inequalities (1.1) was not used in their 
derivation. On the other hand, the conditions of flow stability (3,5), (4,4), and those de- 
fined by (2.3) admit shocks which are unstable relative to small non~variate perturba- 
tions, At such shock p < 0 or p > 2 (1 j- i&f) [6]. Flows with such shocks must be 
considered impossible in reality. 
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fn other words the considered flow is stable, if ineq~lities (1.1) and the condition 

derived in Sects. 2-4 which relates to the particular flow are satisfied at the shocks. 
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We obtain necessary conditions for minimum drag of a body in a viscous fluid 

when the flow is described either by the exact Navier-Stokes equations or by the 
approximate Oseen equations, We study some of the characteristics of optimal 
bodies. The problem of optimi~ng the shape of a body in the flow of a viscous 

fluid was considered peeviously in [l] in the Stokes approximation, wherein ne- 
cessary conditions were derived which the shape of a body of minimum drag 
must satisfy ; some qualitative characteristics of optimal shapes were also inves- 
tigated. 

1, The stationary flow of a viscous incompressible fluid over a body S is described 
by the Navier-Stokes equations and the no-slip boundary conditions on the body surface. 
For convenience in our transformations we consider, in the sequel, a finite volume of fluid 

fz, hounded in its interior by the surface of a body S and, on the outside, by a surface 
Z on which the velocity vector u is specified, For the case in which an ~bo~ded 
mass of fluid flows over the body the minimum distance &om the body surface &’ to the 

surface I: must tend to infinity. 


